Purification and characterization of aromatic amine dehydrogenase from Alcaligenes xylosoxidans.

نویسندگان

  • Tetsuya Kondo
  • Emi Kondo
  • Hitomi Maki
  • Kyoden Yasumoto
  • Kazuyoshi Takagi
  • Kenji Kano
  • Tokuji Ikeda
چکیده

Aromatic amine dehydrogenase was purified and characterized from Alcaligenes xylosoxidans IFO13495 grown on beta-phenylethylamine. The molecular mass of the enzyme was 95.5 kDa. The enzyme consisted of heterotetrameric subunits (alpha2beta2) with two different molecular masses of 42.3 kDa and 15.2 kDa. The N-terminal amino acid sequences of the alpha-subunit (42.3-kDa subunit) and the beta-subunit (15.2-kDa subunit) were DLPIEELXGGTRLPP and APAAGNKXPQMDDTA respectively. The enzyme had a quinone cofactor in the beta-subunit and showed a typical absorption spectrum of tryptophan tryptophylquinone-containing quinoprotein showing maxima at 435 nm in the oxidized form and 330 nm in the reduced form. The pH optima of the enzyme activity for histamine, tyramine, and beta-phenylethylamine were the same at 8.0. The enzyme retained full activity after incubation at 70 degrees C for 40 min. It readily oxidized various aromatic amines as well as some aliphatic amines. The Michaelis constants for phenazine methosulfate, beta-phenylethylamine, tyramine, and histamine were 48.1, 1.8, 6.9, and 171 microM respectively. The enzyme activity was strongly inhibited by carbonyl reagents. The enzyme could be stored without appreciable loss of enzyme activity at 4 degrees C for one month at least in phosphate buffer (pH 7.0).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The blue copper-containing nitrite reductase from Alcaligenes xylosoxidans: cloning of the nirA gene and characterization of the recombinant enzyme.

The nirA gene encoding the blue dissimilatory nitrite reductase from Alcaligenes xylosoxidans has been cloned and sequenced. To our knowledge, this is the first report of the characterization of a gene encoding a blue copper-containing nitrite reductase. The deduced amino acid sequence exhibits a high degree of similarity to other copper-containing nitrite reductases from various bacterial sour...

متن کامل

The First Study of Investigation of Clinical Isolates of Alcaligenes Xylosoxidans and Alcaligenes Faecalis by Phenotypic and Genetic Methods in Iran

Background and Objective: Alcaligenes sp. is a non-fermentative Gram-negative bacillus, which causes nosocomial infections, including urinary tract infections, pneumonia, sepsis, and may be confused with Pseudomonas aeruginosa. Alcaligenes infections usually are not well identified and due to possible errors and similarities with Pseudomonas, their diagnosis with phenotypic tests is not suffici...

متن کامل

Purification and characterization of the dissimilatory nitrite reductase from Alcaligenes xylosoxidans subsp. xylosoxidans (N.C.I.M.B. 11015): evidence for the presence of both type 1 and type 2 copper centres.

Dissimilatory nitrite reductase was isolated from extracts of Alcaligenes xylosoxidans subsp. xylosoxidans (N.C.I.M.B. 11015), after activation of crude extracts by the addition of copper(II) sulphate. The enzyme was purified by a combination of (NH4)2SO4 fractionation and cationic-exchange chromatography to 93% homogeneity as judged by SDS/PAGE. SDS/PAGE and spray m.s. showed that the enzyme h...

متن کامل

Partial Purification and Characterization of the Recombinant Benzaldehyde Dehydrogenase from Rhodococcus ruber UKMP-5M

Background: Benzaldehyde dehydrogenase (BZDH) is encoded by the xylC that catalyzes the conversion of benzaldehyde into benzoate in many pathways such as toluene degradation. Objectives: In this study, the xylC gene from Rhodococcus ruber UKMP-5M was expressed in Escherichia coli, purified, and characterized.Materials and Methods: The xylC was amplified and cloned in E. coli. The re...

متن کامل

Localization of periplasmic redox proteins of Alcaligenes faecalis by a modified general method for fractionating gram-negative bacteria.

A lysozyme-osmotic shock method is described for fractionation of Alcaligenes faecalis which uses glucose to adjust osmotic strength and multiple osmotic shocks. During phenylethylamine-dependent growth, aromatic amine dehydrogenase, azurin, and a single cytochrome c were localized in the periplasm. Their induction patterns are different from those for the related quinoprotein methylamine dehyd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 68 9  شماره 

صفحات  -

تاریخ انتشار 2004